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Abstract

This note describes a simple and robust procedure for the accurate computation of values of the indicator function

along and near the solid material boundary that is in contact with the evolving interface, as is common in crystal growth

on a substrate (solidification and vapor/liquid-phase epitaxy).

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The front-tracking method developed by Unverdi and Tryggvason [1] is widely used for modeling

multiphase fluid flows, boiling and atomization phenomena, and solidification (see the review paper [2] and

references therein for modifications and improvements of the original method, as well as for the discussion

of applications). ‘‘A stationary rectangular grid is used for the fluid flow, but the interface is tracked by a

separate grid of lower dimension. However, unlike front-tracking methods, where each phase is treated

separately, here all the phases are treated together by solving a single set of governing equations for the

whole flow field’’ [2]. For the problems that admit reformulation in terms of a single set of equations, the

method is very robust and accurate even in 3D. Recent state-of-the-art implementations can handle
breaking and merging interfaces.

To distinguish between phases, the method makes use of the material indicator function qðxÞ, that takes
on prescribed values separated by unity in the bulk of phases 1 and 2; for instance, 0 and 1, respectively.

The construction procedure for qðxÞ is described in [1]. We repeat this description here for the sake of

completeness. For example, one has to solve the Poisson equation for qðxÞ. The RHS of this equation is

r �G, where

GðxÞ ¼ R‘Dðx� xð‘ÞÞnð‘ÞDsð‘Þ: ð1Þ
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In (1), D is a ‘‘distribution function’’ that determines what fraction of some quantity defined on the interface

should be assigned to each point in the rectangular grid should one attempt to ‘‘distribute’’ the interfacial

quantity to the rectangular grid (the procedure inverse to interpolation at the interface). Also, nð‘Þ is the unit
normal vector to an interface element of area Dsð‘Þ (length in 2D) whose centroid is at xðlÞ. By construction,

qðxÞ changes smoothly between bulk values in the interfacial region (2–3 grid points at each side of the in-

terface), and thus qðxÞ is the smoothedHeaviside function, see [1,2] for more details. The indicator function is

constructed from the known position of the interface, and it is not used to locate the interface; an interface

markers keep track of interface location and shape. qðxÞ is used only to smooth the otherwise discontinuous

material properties (such as the fluid density and viscosity, for example) across the interface. The smoothed

material properties, in turn, allow for the stable computation of the interface evolution. For the solution of

the Poisson equation, the boundary conditions for qðxÞ must be prescribed on the boundaries of the com-
putational domain (e.g., rectangle in 2D or cube in 3D). The indicator function is always computed anew

every time step of marching the interface through the computational domain.

The method of [1] is often applied to compute the evolution of closed interfaces not in contact with

material boundaries. We are aware of only one application of the method to open interfaces: recently,

Zhang et al. [3] studied the drop spreading on the planar substrate. However, the details of the computation

near the contact point are not presented in that work. In [4], we numerically studied the 2D electro-epitaxial

crystal growth on a patterned masked substrate by using this method. The crystal–melt interface in this

problem is an open curve that touches the planar mask by one of its ends (Figs. 1 and 2). As the crystal
grows, this contact point moves unidirectionally along the mask. The contact angle h that the crystal–melt

interlace makes with the mask is determined by the condition of local equilibrium at the junction of the

crystal–mask, crystal–melt and mask–melt interfaces (the contact angle is measured from within the

crystal). That condition is famous Laplace–Young condition (see [5], for example). As a rule, surface energy

is constant along each interface; it then follows that h is a constant parameter. The next section describes

difficulties we faced while trying to ensure accurate, stable computation, and the procedure that finally

allowed for such computation.

Similar approach was used in [6] for the study of grain-boundary grooving by level set method [7]. The
motivation for this note is to present the details and performance of the approach since it also proved useful
Fig. 1. A sketch of the mathematical situation. The crystal–melt interface (curve in two dimensions) is sketched such that the crystal

overgrowth onto the mask is shown. The interface is parametrized by arc length, s. The direction of DC current through the open

substrate, masked region of the substrate, crystal and melt is upward. (x�; 0) is the contact point.



Fig. 2. Schematic view of the interface near tri-junction, at h < 90�.
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in the context of another method. The usefulness of diffuse interface methods for the numerical solution of

problems with moving contact lines, and their ability to reproduce the contact line physics is demonstrated

in [8]. The contact line spreading when two liquids and a substrate are involved (as in [3,8], for example) is a
more difficult problem than the one under study in this note and in [4].
2. Procedure

Every time step, the boundary condition for qðxÞ must be accurately prescribed at those points in 2D

grid that lie on the line segment y ¼ 0, x 2 ½�‘; L� � I (the lower boundary of the computational box). Let

phase 1 is the melt, phase 2 is the crystal. The simplest method one could think about is just to set q ¼ 0 at
all grid points to the left of the contact point (x�; 0), x� 2 I (in the melt), and q ¼ 1 at all grid points to the

right of (x�; 0) (in the solid). Not surprisingly, this boundary condition leads to the instability of the contact

point motion and of the crystal–melt interface in the vicinity of the contact point (Fig. 5). The obvious

reason for the instability is the prescribed abrupt change in q across the contact point and the resulting

abrupt jump in the material parameters (in our case, electrical conductivities of the melt and the crystal, and

also electrical mobilities and diffusivities of the solute in both phases). Besides, the available information

about the interface slope was not accounted for when q was set constant at both sides of the contact point.

The following simple method was established that provides stable long-time computation.
Let the grid points along y ¼ 0 boundary of the computational box are indexed by i, i ¼ 1; . . . ;N , and let

j ¼ 1; . . . ;N indexes grid points in y-direction (with j ¼ 1 corresponding to y ¼ 0). Let at a given time level

l the first grid point to the left of x� is i ¼ k. At l ¼ 0, we set q ¼ 0 at the grid points 1; . . . ; k � 3 and q ¼ 1

at the grid points k þ 4; . . . ;N , but q ¼ 0:125, 0.25, 0.375 at the grid points k � 2; k � 1; k, respectively, and
q ¼ 0:625, 0.75, 0.875 at the grid points k þ 1; k þ 2; k þ 3, respectively. Thus, we artificially smear out the

boundary condition for the indicator function at l ¼ 0. 1 Denote this approximation qðlÞð0Þ
i;0 Given this

boundary condition, the boundary conditions on the rest three boundaries of the computational box and

the initial interface, the guess to the indicator function at t ¼ 0 is then computed everywhere on 2D grid.
Denote this guess as qðlÞðiniÞ

i;j . We next show how to correct qðlÞðiniÞ
i;j .
1 Of course, smearing can be done more accurately; we found that crude smearing as described is sufficient, and we need to employ it

only once in the beginning of the computation (see below).
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From the geometry (Fig. 2), the x- and y-components of rq at the contact point are

oq
ox

¼ jrqj sin h; ð2Þ
oq
oy

¼ �jrqj cos h ð3Þ
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Fig. 3. Contour plots of qðxÞ at t ¼ 0, near the tri-junction. Interface is shown in red. The computational domain is ½�0:4 : 1� � ½0 : 4�.
The interfacial grid consists of 250 segments. In (a), the 2D grid is 192� 192. In (b), the 2D grid is 192� 576. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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if the interface makes angle h < 90� with the x-axis. From (2) and (3) we obtain

oq
ox

¼ � oq
oy

tan h: ð4Þ

Recall that the interface is the 0.5 level curve of qðxÞ and require Eq. (4) to hold for other level curves of

qðxÞ. Thus we require for other level curves of qðxÞ to intersect y ¼ 0 boundary also at angle h. We can then

discretize Eq. (4) with central finite difference in x and one-sided finite difference in y:
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Fig. 4. Contour plots of qðxÞ at t ¼ 0, near the tri-junction. The computational domain is ½�0:4 : 1� � ½0 : 4� in (a), but

½�0:4 : 1� � ½0 : 0:4� in (b). The interfacial grid consists of 500 segments. The 2D grid is 192� 576.
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� 1

2Dx
qi�1;0 �

3 tan h
2Dy

qi;0 þ
1

2Dx
qiþ1;0 ¼

�4qi;1 þ qi;2

2Dy
tan h; i ¼ 2; . . . ;N � 1: ð5Þ

Eq. (5) is a tridiagonal system of algebraic linear equations for unknowns qi;0. This system can be easily and

accurately solved numerically provided right-hand sides of the equations are known. That is, corrected

values qðlÞ
i;0 of the indicator function along x-axis are found from

� 1

2Dx
qðlÞ
i�1;0 �

3 tan h
2Dy

qðlÞ
i;0 þ

1

2Dx
qðlÞ
iþ1;0 ¼

�4qðlÞðiniÞ
i;1 þ qðlÞðiniÞ

i;2

2Dy
tan h; i ¼ 2; . . . ;N � 1: ð6Þ

Eq. (6) can be applied iteratively 2–3 times if more accuracy is needed. The last step is to assign the just

computed values of qðlÞ
i;0 to qðlþ1Þð0Þ

i;0 and proceed to the next time level, where the procedure is repeated for the

updated location of the interface. Since in our application (as well as in the majority of other) the interface

moves less than a distance between two adjacent grid points between the times t and t þ Dt, the usage of qðlÞ
i;0

as initial approximation on the next time level is justified, and the repetition of the crude smearing is avoided.

At the left boundary of the computational box and at the top boundary we prescribe q ¼ 0; at the right

boundary the interface is flat, and oq=ox ¼ 0 due to symmetry. Also note that simple changes in formulas

(2) and (3) are necessary in the case h > 90�.
Figs. 3 and 4 show the contour plots of the indicator function computed with the described procedure

(Eq. (6) is applied once per time step). In Fig. 3(a), the resolution of the rectangular grid is insufficient to

produce reasonable qðxÞ near the tri-junction. In Fig. 3(b), the contour curves adjacent to the interface are

smooth and intersect the x-axis at the required contact angle (60�). Fig. 4(a) shows that denser interfacial
grids do not improve the computation near the material boundary. Finally, Fig. 4(b) shows that decreasing

the vertical size of the domain ten-fold while keeping constant the number of rectangular grid points along

the vertical (and hence, effectively increasing vertical resolution ten-fold) allows to achieve smoothness

in the far field to the right, but at the same time contour curves to the left of the interface fail to intersect the

x-axis at 60�. Hence, for the computation to be successful the domain size and the rectangular grid must be

carefully chosen.
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Fig. 5. Interface profiles near tri-junction (06 t6 0:1). On the x-axis, value of indicator function is permanently set to 1 and 0 to the

right and to the left of the contact point, respectively. Not only the contact angle in not conserved in this computation, but after slight

initial overgrowth onto the mask the crystal retracts on the substrate and the interface quickly becomes unstable.
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Fig. 6. Longtime, isotropic interface evolution with full procedure in place (0 < t < 103). The electric current is turned off in this

computation.
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The procedure works for any fixed value of h when the above requirement is met; besides, h may change

while the interface evolves as required by underlying physics.

Figs. 5 and 6 show the interface shapes computed without and with the suggested procedure,

respectively.

For the solution of Poisson equation we use the HWSCRT code (cyclic reduction method) from
FISHPACK software library [9].

The procedure can be easily extended to 3D.
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